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Abstract—Algorand is a recent, open-source public or permis-
sionless blockchain system that employs a novel proof-of-stake
Byzantine consensus protocol to efficiently scale the distributed
transaction agreement problem to billions of users. Despite its
promise, one relatively under-studied aspect of this protocol has
been the incentive compatibility of its reward sharing approach,
without which cooperation among rational network users cannot
be guaranteed, resulting in protocol failure. This paper is the
first attempt to address this problem. By carefully modeling
the participation costs and rewards received within a strategic
interaction scenario in Algorand, we first show that even a small
number of non-participating users (due to insufficiency of the
expected incentives) can result in the network failing to append
new transaction blocks. We further show that this effect, which
was observed in simulations, can be formalized by means of
a game-theoretic model that realistically captures the strategic
interactions between users in Algorand. Specifically, we formally
prove that mutual cooperation under the currently proposed
reward sharing approach in Algorand is not a Nash equilibrium.
To remedy this, we propose a novel reward sharing approach for
Algorand and formally show that it is incentive-compatible, i.e.,
it can guarantee cooperation within a group of selfish users.
Extensive numerical and Algorand simulation results further
confirm our analytical findings. Moreover, these results show that
for a given distribution of stakes in the network, our reward
sharing approach can guarantee cooperation with a significantly
smaller reward per round.

Index Terms—Blockchain, Algorand, Incentive Compatibility,
Game Theory, Reward Sharing.

I. INTRODUCTION

A blockchain is an immutable distributed database that
records a time-sequenced history of facts called transactions.
This record is maintained by constructing consistent copies
of the cryptographic hash-chain of transaction blocks in a
distributed fashion. One key aspect of any blockchain protocol
is the consensus algorithm which enables agreement among
a distributed network of autonomous nodes or users1 (a.k.a.
miners in certain protocols) on the state of the blockchain, un-
der the assumption that a fraction of them could be malicious
or faulty. Blockchains could be further categorized as per-
missioned or permissionless depending on whether a trusted
infrastructure exists or not to establish verifiable identities
for network nodes. In Bitcoin [1], a popular permissionless
blockchain protocol, consensus is achieved by the network se-
lecting a leader in an unbiased fashion once every 10 minutes
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1The term users and nodes are used interchangeably. Typically, users control

nodes which are computational systems that are part of the Algorand peer-to-
peer network and execute the reference software.

on an average (called a round). The selected leader gets the
right to commit or append a new block onto the blockchain.
The network then implicitly accepts this block by adding
on top of it or reject it by appending on some other block.
Bitcoin uses a Proof-of-Work (PoW) mechanism to select the
leader in each round, where nodes or miners compete with
each other by solving a hash puzzle. The node that wins this
competition gets the right to propose the next block. As PoW
involves significant computation, Bitcoin includes a reward
mechanism to incentivize miners. Besides Bitcoin, several
other permissionless systems (e.g., Ethereum [2] and other alt-
coins [3]) also employ a PoW-based consensus algorithm and
a reward model to ensure honest participation.

Bitcoin’s PoW-based consensus mechanism, however, has
several shortcomings. In particular, the hash puzzle-based PoW
approach is wasteful in terms of energy [4], it does not prevent
forking and results in mining centralization [5]. Also, it does
not scale well with the number of transactions and network
users [6]. Several platform-specific efforts, such as BIP 102 [7]
and Bitcoin-NG [8], have been proposed to improve Bitcoin’s
transaction throughput. Alternatively, platform-agnostic solu-
tions aimed to improve the scalability-related shortcomings of
PoW-based consensus by employing a committee or sharding
approach [9], payment networks [10], [11], and side-chains
[12] have also been proposed. Several other approaches have
tried to either improve the existing version of PoW [13]
or have proposed alternatives such as Proof-of-Stake (PoS)
[14]–[18], Proof-of-Burn (PoB) [19], Proof-of-Elapsed Time
(PoET) [20] and Proof-of-Personhood (PoP) [21].

Of all these improvements, the Algorand protocol [18],
[22] has garnered the most attention within the permissionless
blockchain community, primarily because of its innovative
PoS-based consensus protocol that is not only computation-
ally (and energy) efficient, but also provides strong security
guarantees against forking in a network comprising of faulty
and malicious users or nodes. Algorand eliminates the pos-
sibility of hash power centralization by removing the differ-
ence between normal network users and miners and scales
pretty well. In fact, Algorand can commit about 750 MBytes
of transactions per hour, which is 125 times of Bitcoin’s
throughput [22]. These security and performance guarantees of
Algorand’s consensus design has resulted in a lot of optimism
within the blockchain community. However, one critical issue
has not received much attention, if any: does the currently
proposed reward distribution approach in Algorand promote
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participation or cooperation among rational users to complete
all the required protocol tasks?

Since the inception of Bitcoin, a significant effort has
been spent by the research community towards understanding
the incentive-compatibility of its reward distribution approach
[23]–[25], towards characterizing the strategic behavior of
rational miners in mining pools [24], [26]–[30], and towards
designing new incentive-compatible PoW-based cryptocurren-
cies [4] and scalability solutions [31], [32]. However, no such
analysis for Algorand exists yet, and this paper attempts to
fill this research gap. We make the first attempt to formally
analyze Algorand’s reward distribution strategy by employing
well-established game-theoretic tools and techniques. More
specifically, by modeling a single round of Algorand’s con-
sensus protocol as a single-stage non-cooperative multi-player
game, we show that without an efficient reward sharing
protocol, rational nodes would have more incentive to deviate
from cooperation and behave selfishly. To overcome this
problem, we propose a new reward distribution approach for
Algorand, which, in addition to the stake possessed by users,
considers their roles during consensus or Byzantine agreement
for distributing the per-round rewards. We further show that
our proposed role-based reward distribution approach is able to
converge to a Nash equilibrium (NE) where a certain subset
of nodes will cooperate. We conduct an extensive empirical
evaluation of the proposed reward distribution approach us-
ing both numerical and Algorand protocol simulations. Our
evaluations further confirm our analytical results by showing
that we can distribute significantly smaller rewards among
users while enforcing cooperation in Algorand. The Algorand
Foundation can use our results to keep track of the network
state and adapt the distributed rewards accordingly. To the best
of our knowledge, this paper is the first to provide a systematic
analysis of incentive design in Algorand.

II. ALGORAND SYSTEM MODEL

In this section, we first summarize the Algorand protocol.
This description is intended to provide readers with the main
concepts of Algorand. Interested readers are referred to [1]
and [18] for more technical details on Bitcoin and Algorand.

A. Contrasting Consensus in PoW with PoS Blockchains

We begin by first contrasting PoW consensus approach
of Bitcoin with the more recent PoS approach of Algorand.
In this direction, we highlight some of the most significant
shortcomings of Bitcoin’s PoW approach and discuss how they
are overcome by Algorand’s PoS consensus.
• PoW wastes significant amount of computation, and by

relation, the electrical energy used to achieve it. PoW schemes
also assume that a majority of the nodes contributing to the
network’s hash or computational power are honest, i.e., at least
51% of the network’s hash power comes from honest users.
• PoW-based consensus eventually leads to concentration

or centralization of power, where entities in the network
eventually monopolize computational power to control new
block addition (e.g., Bitcoin Mining Pools) [27]–[29].

• PoW allows the possibility of forking, where two different
hash chains could reach the same length and neither one
supersedes the other [24], [26]. Efforts to mitigate the impact
of forking in existing solutions have resulted in the block
inter-arrival and transaction confirmation times to become
impractically high (e.g., current Bitcoin block inter-arrival
time is 10 minutes while transaction confirmation time is
1 hour). As a result, current PoW blockchain solutions do
not scale well with the number of transactions and users.
To overcome these shortcomings, Algorand proposes a novel
PoS based consensus protocol. Similar to Bitcoin, Algorand is
fully decentralized and maintains a public, immutable ledger of
transactions by reaching consensus on the order of transactions
in the ledger. However in Algorand all users are “equal”, i.e,
there is no distinction between users (miners) who can add
new blocks and those who just create and receive transactions.
Moreover, as each user/node runs the same computationally
efficient function to achieve consensus (as opposed to PoW-
based systems where users compete for the right to add the
next block), Algorand does not waste computations, and thus
electricity. Lastly, the design of Algorand’s consensus protocol
guarantees that there is no forking with an overwhelmingly
high probability. A side-effect of this is that Algorand scales
extremely well with the number of users/nodes and transac-
tions, compared to classical PoW-based systems [22].

B. Summary of Algorand

Next, we summarize the creation, distribution and agree-
ment of transaction blocks in Algorand, as shown in Fig. 1.

1) Assumed Adversary Model: In addition to standard cryp-
tographic assumptions, Algorand assumes that honest users
always run bug-free reference software and follow all protocol
steps. As is standard in PoS systems, Algorand assumes that
the fraction of money held by honest users is above some
threshold h (a constant greater than 2

3 ). An adversary can
participate in Algorand by creating multiple sybil nodes/users
and owning some money or stake in the system. An adversary
in Algorand can arbitrarily corrupt honest users, provided that
the amount of money held by honest, non-compromised users
remain above h. However, an adversary cannot compromise
the keys of honest non-compromised users. Algorand assumes
that most honest users receive messages sent by most other
honest users within some known time bound in order to
continue to make progress on adding blocks to the blockchain
(i.e., liveness goal). This is the strong synchrony assumption.
Algorand can achieve consensus or agreement on blocks (i.e.,
safety goal) even if the network is asynchronous (or controlled
by the adversary) for a long but bounded period of time,
provided it is strongly synchronous for a period of time after.

2) Network and Communication Protocol: The Algorand
network is a peer-to-peer network of honest and faulty or
malicious nodes, where each node is represented by a pub-
lic/private key pair (see Fig. 1-(a)). The number of malicious
or faulty nodes is bounded by the honest stake ownership con-
dition outlined earlier. Nodes in the network communicate in a
peer-to-peer fashion using unique TCP connections. Commu-
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Fig. 1: Algorand System Model. (a) Algorand nodes build a peer-to-peer network. (b) Each user executes cryptographic sortition
algorithm to determine his role. At the time t1 each leader sends his proposed block to all first-hop neighbors. Consequently, all
nodes forward their received blocks to their neighbors. (c) The Reduction phase reduces consensus problem to an agreement
on one or two options. In step#1, committee members vote for the highest priority block they received. In step#2, new
committee members count last step votes and re-transmit popular blocks as their vote in the second step. (d) BinaryBA? phase
reach agreement on a proposed block from the reduction phase or an empty block. This phase can be followed up (on average
for 11 steps, i.e., k = 11) to ensure that each node agrees on the same consensus. In each step committee members votes for
their observation of the reduction phase. (e) the final block would be added to the chain.

nications happen by means of a standard gossip protocol where
each node broadcasts his message to all his peers, who in
turn relay it to their neighbors. The Algorand communication
protocol defines four types of messages:

1. Transaction: This message transfers a certain amount of
Algos (currency unit in Algorand) from a sender to a receiver
(identified with their public-keys) and signed by the sender
(with its private key), which is referred to as a transaction.
Multiple transactions are organized into a block. An Algorand
block is either a set of transactions or an empty block. In
addition, each block contains a pre-determined random seed
(described later) and the hash of the previous consensus or
agreed block it is extending.

2. Voting: This message contains a signed vote by the
sender along with the sortition proof (described below). Each
sortition proof is associated with a priority value which is
computed in a deterministic fashion.

3. Block proposal: This message contains a new block (to be
added), along with the signed hash of the block and a sortition
proof establishing the role of the sender as a leader.

4. Credential: This message contains the sortition proof of
the leader, which is generally broadcast at the beginning of
each round by the leader using the gossip protocol. Peer nodes

employ the priority values extracted from sortition proofs in
the credential messages to avoid relaying block proposals with
low priorities. This helps preventing congestion in the network
due to a significantly large number of block proposals.

3) Consensus or Byzantine Agreement: Algorand’s consen-
sus or Byzantine Agreement (denoted as BA?) protocol oper-
ates in rounds, where in each round all nodes attempt to reach
agreement on a new block of transactions. At the beginning of
a round, each node employs cryptographic sortition to privately
determine if it is a block proposer or leader, i.e., has the right
to propose a block for that round. To propose a block, each
leader node assembles the pending and validated transactions
inside a block proposal and gossips it together with its sortition
proof of being elected a leader (see Fig. 1-(b)). After block
proposals are broadcast, each node collects incoming block
proposals for a fixed duration, selecting and retaining the one
valid block with the highest priority sortition proof.

Each user then (asynchronously) initializes the BA? proto-
col with the highest-priority block they have received. The
BA? protocol enables all nodes in the network to reach
consensus on a single block. The BA? protocol comprises
of two sequential phases, the Reduction phase (Fig. 1-(c))
followed by the BinaryBA? phase (Fig. 1-(d)), with each phase
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consisting of a sequence of steps. At a high level, in each step
first a random or unpredictable group of nodes referred to as
committee members is elected. Then the elected committee
members vote on a specific block, based on votes received
from the previous step, and broadcast their new votes in voting
messages. Readers should recall that all voting messages also
contain a sortition proof which proves the validity of the
broadcaster as a committee member.
• Reduction Phase (Fig. 1-(c)): This first phase of the

BA? protocol comprises of exactly two steps. In the first step,
each committee member votes on (the hash of) the blocks
proposed for consideration. In the second step, committee
members vote for the block hash that received votes over
a certain threshold. If no block hash receives enough votes,
committee members vote for the hash of the default empty
block. Reduction phase concludes with either at most one non-
empty block hash (the one that received the maximum number
of votes above the threshold) or hash of an empty block (if
no block hashes received enough votes). This output of the
reduction phase is passed as input to the BinaryBA? phase.
• BinaryBA? Phase (Fig. 1-(d)): The goal of the

BinaryBA? Phase is to reach agreement or consensus on the
majority voted non-empty block (hash) from the reduction
phase or, in case there is no consensus, on the empty (default)
block. In the common case, when the network is strongly
synchronous and the block proposer or leader is honest,
BinaryBA? phase will start with the same block hash for most
users, and will reach consensus in the first step, since most
committee members vote for the same block hash value. If the
network is not strongly synchronous, BinaryBA? may return
consensus on two different blocks (i.e., the block received from
the reduction phase and the empty block). The outcome of the
BinaryBA? phase is used by the BA? algorithm to arrive at
either a final or a tentative consensus. Final consensus means
that BA? will not reach consensus on any other block for that
round, while tentative consensus means that BA? is unable
to guarantee the safety goal in this round, either because of
network asynchrony or due to a malicious block proposer.

4) Cryptographic Sortition: Each node in the network
employs a cryptographic sortition algorithm to determine if it
is selected as a leader (or block proposer) at the beginning of
each round, and later, if it is selected as a committee member
at the beginning of each step (of both the Reduction and
BinaryBA? phases). The sortition algorithm is implemented
using Verifiable Random Functions (VRF) [33] which allow
users to produce verifiable proofs using their private keys that
can be publicly verified using the corresponding public key.
Specifically, in order to generate a sortition proof for step s
in round r, a user i computes sigi(r, s,Qr−1), where sigi is
a digital signature computed using the user i’s private key,
and Qr−1 is a random seed (predetermined at the end of the
previous round, i.e., r − 1). This sortition proof is included
by the nodes in their block proposals and voting messages in
order to prove their roles as leader and committee members,
respectively. The recipients of these messages first validate the
signature (using the public key) and then compute the hash of

TABLE I: List of Symbols in Algorand Analysis

Symbol Definition
Ri Foundation reward in round ti
Fi Summation of transaction fees in round ti
PF
i Reward pool level in round ti
Bi The shared rewards in round ti
α Fraction of rewards shared between leaders
β Fraction of rewards shared between committee members
γ Fraction of rewards shared between remaining online nodes
cfix Common costs of Algorand nodes
cL Costs for Algorand leaders
cM Costs for committee members
cK Costs for Algorand remaining online nodes
rLi Rewards per each unit of stake for a leader
rMi Rewards per each unit of stake for a committee member
rKi Rewards per unit of stake for a remaining online node
sj Stake of node j ∈ {lj ,mj , kj}; slj is reward for leader lj
SL Summation of all stakes for leaders; i.e. SL =

∑
j∈L slj

SM Summation of all stakes for committee members
SK Summation of all stakes for other nodes
SN Summation of all stakes, i.e., SN = SL + SM + SK

u
lj
i Payoff for leader lj in round ti

u
mj

i Payoff for committee member mj in round ti
u
kj

i Payoff for remanding node kj in round ti

the sortition proof to verify a certain sortition condition that
determines the validity of the claimed role. The possibility that
the condition is verified is directly proportional to the stake
of the node (to which the proof belongs to) and depends on
a constant role parameter fixed in the protocol. Due to space
restrictions, we will not further elaborate on this and interested
readers can find more technical details in [18], [22], [33].

III. PROBLEM FORMULATION AND MOTIVATION

Similar to any other permissionless blockchain protocol,
Algorand must also provide enough incentives to foster coop-
eration among its participants, whether they are leaders, com-
mittee members, or online nodes, in order to enable effective
consensus (on the set of transactions), i.e., to achieve the safety
and liveness goals. In this section, we first summarize all the
processing costs in the Algorand consensus protocol, followed
by a discussion of how rewards could be distributed among the
various protocol participants. Next, we empirically show that if
rewards are not appropriately distributed, rational participants
have an incentive to not cooperate (in the consensus protocol
tasks), resulting in no new blocks being added. Our goal here
is to highlight the need for designing an incentive-compatible
reward sharing mechanism for achieving cooperation in Algo-
rand. Table I presents the notations used throughout the paper.

A. Algorand Costs

From the operational details of Algorand, as outlined earlier,
it is clear that each participant or user, irrespective of their role,
is expected to perform some processing and communication
tasks during each phase of the protocol which incurs some
measurable cost, say, in terms of consumed energy. These
costs for each processing task can be further quantified using
monetary values (e.g., Dollars or Algos) by using the current
energy costs. Below we present a brief description of each of
these tasks that incur some significant cost, which are also
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TABLE II: Algorand tasks and costs given the role of nodes.

Task Symbol Leader Committee Others
lj mj kj

Transaction Verification cve X X X
Seed Generation cse X X X
Sortition Algorithm cso X X X
Verify Sortition Proof cvs X X X
Block Proposition cbl X
Gossiping cgo X X X
Block Selection cbs X
Vote cvo X
Vote Counting cvc X X X

summarized in Table II. We would like to stress that our
goal here is not to precisely quantify the cost associated with
each task - we simply argue that each of these tasks incurs a
significant cost which cannot be ignored by the user. Rather
than precisely quantifying each of these costs, we abstract each
as a fixed parameter within our model.

Transaction Verification Cost (cve): This cost is incurred
by an Algorand node to check the validity of a transaction.
For each transaction validity check, the node must verify the
signature and also check whether the sending user has enough
Algos in its account for a successful transaction. A leader
assembles a set of transactions into a block, and all Algorand
nodes check the validity of transactions inside a block.

Seed Generation Cost (cse): Algorand requires a random
and publicly known seed as an input to the sortition algorithm.
Thus, a new seed is published in each round of Algorand. This
seed is a random number generated by VRF [33] from the
previous seed value and the current round number. Also, for
security reasons Algorand refreshes the seed every R rounds
[22]. We parameterize the cumulative cost of generating a new
seed in each round as cse.

Sortition Algorithm Cost (cso): As outlined in the previous
section, the sortition algorithm employs a VRF function [33] to
generate a membership proof which is included by leaders and
committee members in their messages to prove their role (as a
leader or committee member). The per-node cost of executing
the sortition algorithm is parameterized as cso.

Block proposition Cost (cbl): The cost of assembling a set
of outstanding, but valid, transactions (including the sortition
proof) into a block and broadcasting it to the neighboring
nodes in the network is borne by each (selected) leader node
in each round. We parameterize this cost as cbl.

Gossiping Cost (cgo): During each round, each node in
the Algorand network supports the network by forwarding
(gossiping) network messages, including transactions, blocks,
and votes. This expected gossiping cost for each round for
each node is parameterized as cgo.

Block Selection Cost (cbs): In each round of the Algorand
protocol, the sortition algorithm will select multiple (up to 70)
nodes as leaders, with each leader proposing its own block.
Each committee member in each round, specifically, during
the reduction phase of the BinaryBA? protocol, needs to select
(and vote) for the block with the highest priority. This block
selection cost borne by a subset of committee members in each
round, which includes the verification of sortition proofs, is

parameterized as cbs.
Vote Cost (cvo): Each selected committee member during

each step of the BinaryBA? protocol should validate and check
incoming messages (including, votes from previous steps)
before submitting its own vote in that step. This cost, which
also includes the cost to append the sortition proof to the
outgoing vote and broadcast to neighbors, is parameterized
as cvo. The timeout to submit a vote is defined by Algorand
and is equal to 20 seconds. It should be noted that cvo does
not include the cost of vote counting and is outlined next.

Vote Counting Cost (cvc): After all committee members
have submitted their votes, each Algorand node should vali-
date voting messages by checking their sortition proofs. cvc

represents all associated costs of sortition proofs and signature
verifications incurred when counting and tallying the votes
inside each received vote message.

Given the above task-specific costs, let us now outline
the overall costs incurred by each node. Each node incurs a
cumulation of two types of costs: (i) a fixed cost, and (ii) a
role-based cost. The fixed cost (cfix) represents the required
costs borne by each node irrespective of its role and is equal
to cve+cse+cso+cgo+cvs+cvc. In addition to the fixed cost
cfix in each round, each node incurs a cost based on its role(s)
(i.e., Leader, Committee Member or None) in that round and
is represented as follows:

cj =





cfix + cbl j ∈ L
cfix + cbs + cvo j ∈M
cfix j ∈ K,

(1)

where L, M, and K are the sets of leaders, committee members
and all other users without particular role, in round i.

B. Reward Sharing in Algorand

Given these costs, it is clear that rational users (which
we assume our users are) will fully participate in Algorand’s
distributed consensus protocol if and only if they have enough
incentive to do it. As Algorand is a cryptocurrency, the
mechanism for providing incentives is straightforward - pay
users in Algos for their participation efforts and costs. For
instance, Bitcoin has an incentive model where the winner
of the PoW puzzle receives incentives/rewards in the form of
block rewards and transaction fees (paid out as Bitcoins) to
be engaged in the PoW and block addition process. A similar
question arises in Algorand: which users should be paid, and
how much, in order to enable their continued participation in
the distributed consensus process?

Recently the Algorand Foundation, dedicated to fulfilling
the global promise of blockchain technology by leveraging
the Algorand protocol, has suggested a tentative version of
reward sharing in their protocol [34], [35], as shown in Fig. 2.
The proposed mechanism assumes creation and maintenance
of two reward pools: (i) Foundation Reward Pool, and (ii)
Transaction Reward Pool. These pools are nothing but public
keys controlled by the Foundation. These public keys act
as a central (foundation-controlled) storage where reward
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round i, Rj
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Bislj

SN
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i = ri = Bi

SN
. Considering the proposed

approach for reward sharing by Algorand Foundation, we are
going to analyze whether the proposed mechanism can provide
enough incentive for nodes’ cooperation in the following
sections.

C. To be Cooperative or Not: Problem Motivation

Let us assume that a node in Algorand network is cooper-
ative, when it plays its role appropriately by performing all
of the assigned tasks and consequently accepts the associated
costs. On the other hand, a defective node is only online but
does not perform its assign tasks. Note that in this case, if
we do not deploy any punishment mechanism, the node will
still obtain its reward based on the proposed model of reward
sharing by Algorand Foundation.

In order to get an insight about the effectiveness of the
proposed approach for Algorand reward sharing, we first
conducted a set of simulations to see if the proposed model
is robust enough against any selfish behavior of nodes. In
summary, we would like to observe the effect of defective
nodes who get rewards and do not contribute to the Algorand
network. We constructed our simulator based on Deka et al.
Algorand discrete event simulator [38]. This simulator has
been written in python and simulates all modules in Algorand
protocol, including sortition, reduction, BinaryBA? , network
delays, etc. We can also customize different network param-
eters, e.g., number of nodes, distribution of network message
delay, etc. We also developed the Algorand foundation reward
sharing protocol in this simulator to compute rewards and
share them among the Algorand nodes in each round.

In each round of our simulation, Algorand nodes run sim-
ulated sortition algorithm to obtain their role in that round.
Then, leaders propose the blocks for their received transac-
tions and gossip the proposed blocks through the network.
Committee members start voting for the received blocks in
Reduction and BinaryBA? phases, in order to reach consensus
on a single final block. Finally, all nodes will count votes for
the last step of BinaryBA? and compute the agreed block.

Before the next round, the reward sharing algorithm would
be started and it computes and sends rewards to all nodes,
according to the proposed Algorand Foundation mechanism.
Note that the following results have been obtained by running
100 simulations and make an average over all possible block
outcomes. In each simulation instance, we randomly select
defective notes by a uniform distribution, where we assume
that the defective nodes could be 5%, 10%, or 15% of all
nodes in the network. Moreover, we distribute stakes among
all nodes with a uniform distribution between 1 to 50 Algos.

We first analyze the impact of defective nodes on the
block creation process.The corresponding number of nodes
who extracted final, tentative, or no blocks from the network
messages (i.e., votes) are plotted in Figure 3. As shown in
Figure 3-(a), low defection rates has no significant impact on
the consensus process and most of the Algorand nodes reach
consensus on a single final block. But, as the defection rate
increases, the number of tentative blocks and number of nodes
who could not extract any block increases.

For example, as shown in Figure 3-(c), with 15% defection
rate, most of Algorand nodes don’t reach any consensus on a
final block. Moreover, the number of nodes who cannot follow
the ledger starts increasing exponentially somewhere around
round #40. In other words, with 15% of defective nodes the
network may go to weak synchrony state or even asynchrony
in some rounds and it prevents some nodes to receive network
messages (e.g. votes, block proposals, and etc). However, by
reaching the strong synchronous network after a long period
of asynchrony (i.e. weak synchrony assumption), nodes who
have extracted tentative blocks can finalize their blocks. This
effect has been highlighted in Figure 3-(c) around round 10 to
17. As it is shown, in round #12 the asynchrony of network
have caused increasing in the number of nodes who have
extracted tentative blocks from the network. But in round #13,
network becomes synchronous again and consequently most of
Algorand nodes extract finalized blocks.

We also need to clarify that these defective nodes may con-
trol more than threshold h (i.e. Algorand honest assumption
as defined in Section II-B1), if there exist many rich nodes in
the defection list. In this case, defection of these rich nodes
can make more serious problem on the network synchrony and
consequently the block creation process.

Hence, the above simulation results show that without any
incentive-compatible mechanism, the Algorand protocol fails
to perform consensus agreement and produce blocks. In fact,
if we cannot provide enough incentives to nodes to cooperate
the network can easily go to asynchrony mode and fail to
provide blocks. In the following section, we will propose a
game-theoretical model to analyze the effect of defection and
propose possible solution to avoid defective behavior in these
networks.

IV. GAME MODEL AND INCENTIVE ANALYSIS IN
ALGORAND

In order to obtain a good insight of the strategic behavior
of the nodes in Algorand, we model the interaction of these

vii

Fig. 2: Algorand Reward sharing mechanism.

distribution related funds (Algos) are deposited. All rewards
for each round of the Algorand protocol are expected to be
disbursed (or transferred) from this public key. To bootstrap
the new cryptocurrency, the Algorand foundation implemented
a ceiling of 1.75 billion Algos to be disbursed from the
Foundation Reward Pool. Per the foundation, in each round
Ri Algos are added to the Foundation Reward Pool until
the ceiling of 1.75 billion is reached. The projected total
rewards for the first 12 periods are suggested by the Algorand
Foundation [34] as 10 (period 1), 13, 16, 19, 22, ..., 38, and 38
Millions of Algos (period 12), respectively [35]. Each reward
period spans 500 thousands blocks. For example, in the first
reward period, 10 millions Algos would be distributed, which
is equal to approximately 20 Algos for each round, if in each
round a block could be successfully added to the ledger.

The reward sharing proposal suggests that in each round
this reward Ri should be distributed among Algorand users
in proportion to their current system stake, irrespective of
their roles (i.e., leaders or committee members). In other
words, users with higher stake receive a larger portion of the
allocated foundation reward Ri in each round. The transaction
fees accumulated from the transactions in the added blocks
during the bootstrap phase are saved or deposited into the
Transaction Fee Pool. This pool is not planned to be used
for reward disbursement until the 1.75 billion Algos ceiling
of the Foundation Reward pool is met. In summary, currently
only the Foundation Reward Pool is being used for the per-
round reward (or incentive disbursement). Out of the Ri Algos
disbursed to the Foundation Reward Pool per round i, let us
assume that Bi (where, Bi ≤ Ri) Algos are actually disbursed
among the system users. Initially Bi is expected to be equal
to Ri. Let us assume that the total value of stake in the system
is SN . Thus, SN = SL + SM + SK . Here, SL, SM , and SK
are the total stake values of leaders, committee members, and
all other online nodes in round i, respectively. These values
are changing in each round, but for the sake of presentation
we write SN instead of SN (i). Then, the rewards assigned to
a leader node lj in round i, Rji , would be

Bislj
SN

, where slj is
the stake of leader lj . In summary, the reward distribution is:

Rji =





rLi slj j ∈ L
rMi smj

j ∈M
rKi skj j ∈ K,

(2)

where rLi = rMi = rKi = ri =
Bi

SN
. We now analyze if the

incentives provided by this mechanism is enough to guarantee
cooperation (in the consensus process) by rational nodes.

C. To be Cooperative or Not: Problem Motivation

Let us assume that an Algorand node is cooperative when
it plays its role, i.e., performing all the assigned tasks, and
consequently, accepting all the associated costs. In contrast,
a defecting node only remains online but does not perform
any of its assigned tasks, except sortition computation to join
the network (i.e., paying cost cso). In this case, if appropriate
countermeasures (e.g., punishment mechanisms) are not de-
ployed, the defecting nodes may end up earning rewards by
simply relying on other nodes to honestly perform their tasks
and not contributing anything towards the block proposal, ver-
ification, and consensus tasks. Considering this definition for
cooperative and defecting behavior, we can divide Algorand
node behaviors into the following four categories:
• Honest nodes: These nodes always cooperate. They are also
altruistic and cooperate even when the reward is not more than
the cost of cooperation.
• Honest but Selfish nodes: These nodes cooperate and defect
depending on the amount of received incentives versus the cost
for their actions. Hence, they are selfish and will cooperate if
and only if the reward is more than the cost of cooperation.
• Malicious nodes: They arbitrarily cooperate or defect. In
addition to this, they may inject malicious transactions and
blocks, or arbitrarily compromise other nodes.
• Faulty nodes: These nodes are offline due to system
malfunction (and not by choice) and do not contribute anything
to the network operation.

In this paper, we assume that all network nodes behave in an
honest but selfish manner. Moreover, in this preliminary work,
we assume that nodes do not arbitrarily behave maliciously or
become faulty. In other words, nodes make a strategic decision
to cooperate (participate) or defect (not participate) solely by
maximizing their own interests/incentives. They neither make
any arbitrary protocol participation decision, nor maliciously
modify the protocol to maximize their interests/incentives. To
get an insight into the robustness of the proposed Algorand
reward sharing approach against selfish (or rational) node/user
behavior, we conduct preliminary simulation experiments.

Our simulator, written in Python, is based on the Algorand
discrete event simulator by Deka et al. [36] and implements all
Algorand protocol modules, including, Sortition, Reduction,
and BinaryBA?. We are also able to simulate network delays
and various synchrony conditions, as well as, customize dif-
ferent network parameters such as total number of nodes and
the distribution of network message delays in our simulator.
Within this simulation framework, we also implemented the
reward sharing protocol proposed by the Algorand Foundation
(described earlier), which computes a per-round reward to
be shared among the nodes. We simulate each round of the
Algorand block proposal and consensus protocol, as outlined
in Section II , and execute the reward sharing algorithm at the
end of each round to compute and distribute rewards.
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We simulate the Algorand with 100 different seed numbers
and let the protocol operate for 100 rounds in each simulation.
In each simulation instance, we randomly select defecting
nodes (i.e., honest and selfish nodes who chose to defect given
their payoff) by means of a uniform distribution. We consider
the total number of defecting nodes in the network in steps of
5%, 15%, and 25% of all the nodes in the Algorand network.
Moreover, we distribute the stakes among all nodes with a
uniform distribution between 1 to 50 Algos. Note that we
compute trimmed mean which ignores 20% top and bottom
data to compute the mean values of these 100 simulations.
In our simulation each node sends the messages to 5 other
nodes that are randomly selected from the network. We first
analyze the impact of defecting nodes on the block creation
process. The corresponding number of nodes who extracted
final, tentative, or no blocks from the network messages (i.e.,
votes) are plotted in Fig. 3. As Fig. 3-(a) shows, even with
a low defection rate of 5% the number of tentative blocks is
increasing in the network. Moreover, about 7% of nodes do
not receive any block. When the number of defecting nodes is
increasing the Algorand network fails to inform most of the
nodes about the final blocks.

For example, as shown in Fig. 3-(b), with 15% defection
rate, most of the nodes do not reach any consensus on a final
block after round #30. In other words, with 15% defection the
network may transition to a weak synchrony or even an asyn-
chrony state in some rounds and it prevents some nodes from
receiving network messages (e.g., votes and block proposals).
However, by reaching a strong synchrony state after a long
period of asynchrony (i.e. weak synchrony assumption), nodes
who have extracted tentative blocks can finalize their blocks.
This effect has been highlighted in Fig. 3-(b) in the proximity
of rounds 17 through 20. As shown in the figure, in round
#17 the asynchrony of the network has caused an increase in
the number of nodes that have extracted tentative blocks from
the network. But in round #18, network becomes synchronous
again and consequently a majority of the Algorand nodes are
able to extract the finalized blocks. We also need to clarify
that these defecting nodes may control more than threshold h
(i.e. Algorand honest assumption as defined in Section II-B1)
of stakes in the network. This happens if there are more
nodes with high values of stakes in the list of defecting nodes.
Defection of these nodes can amplify the network synchrony
problem in the Algorand network and consequently the block
creation process. Finally, the results show that even with 25%
defection the network fails in the first few rounds.

In summary, the above simulation results show that without
an incentive-compatible reward sharing approach that fos-
ters cooperation, rational nodes will be inclined to defect
from the block creation and consensus process resulting in
an asynchrony state, thereby failing to add new blocks. In
the following section, we outline a game-theoretic model to
analyze the effect of defection in the Algorand network and
propose a solution to prevent defection in the network.

IV. GAME MODEL AND INCENTIVE ANALYSIS

To obtain insight into the strategic behavior of nodes in
Algorand, we model their interaction using a static non-
cooperative game. We first focus on the interaction between
nodes that are supposed to interact and create blocks in each
round. Let us assume that each round i of Algorand is a static
game GAl where network nodes are players. We assume that
all strategies are hard-wired in each node. In other words, each
node does not change his chosen strategy during round i of
the game. They also choose their strategies simultaneously.

In our Algorand game GAl users must decide whether to
cooperate and contribute to make a new block or not. The
game GAl is formally defined as a triplet (P,S,U), where
P is the set of players, S is the set of strategies and U
is the set of payoff values. The set of players P includes
leaders L, committee members M, and all other users K, i.e.,
P = L

⋃
M

⋃
K. An Algorand node can take an action (si)

from the set S = {C,D,O}, where C, D, and O represent
(i) Cooperate, (ii) Defect, and (iii) Offline, respectively. As
we discussed in previous section, cooperative nodes follow all
defined tasks, while defecting nodes are only online but do not
perform their assign tasks. Moreover, a node can play offline
in round i (i.e., plays O), in which it runs sortition computing
but it becomes offline and does not receive any reward. Given
the above assumption, the following lemma shows that the O
strategy is always strictly dominated by D strategy.

Lemma 1. In GAl, strategy O is strictly dominated by playing
defection (D).

Proof. A user always obtains greater payoffs by playing D
instead of O, for all possible strategy profiles of other users
(i.e., opponents). In fact, a user can obtain the reward by
playing D in the current version of Algorand, but it’s payoff
would be −cso, if it plays O.

Given the result in Lemma 1, we are not going to consider
strategy O in our analysis as it will not be chosen by any
rational player. In the following section, we present our results
for the analysis of GAl, based on the proposed reward sharing
by the Algorand Foundation [34].

A. Analysis of GAl

In GAl, we define strategy profiles All − D and All − C,
where all nodes choose to play C and D, respectively. We
apply the Nash Equilibrium (NE) concept to analyze GAl. At
the NE profile no player can unilaterally change his strategy to
increase his utility. The following theorem shows the existence
of an all defection strategy (All −D) NE for GAl.
Theorem 1. In each round i of GAl with N players (nL
leaders, nM committee members, and nK remaining nodes),
all-defection strategy profile (All−D) is a Nash equilibrium.

Proof. Let us consider a strategy profile where all Algorand
nodes defect, where there is no incurred costs such as cL, cM ,
or cK for all nodes. Hence, the payoff for each node would
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(a) Defection Rate: 5% (b) Defection Rate: 15% (c) Defection Rate: 25%

Fig. 3: The percentage of nodes who extracted the tentative and final blocks with different rate of defection. In each scenario,
defecting nodes will not cooperate if the benefit is not more than the cost of cooperation for them.

be ui = −cso as there is no block added to the chain and they
cannot earn any Algo. In this case:

1) None of the Algorand leaders lj can increase their
payoff unilaterally by changing their strategies. Because,
the cooperative leader can not gain any reward without the
contribution of at least SSTEP committee members in each
step of BA? protocol and SFINAL members for the final
committee, as discussed in Section II. In other words, the
payoff of a leader who deviates from D to C would be
u
lj
i (C) = −cL, which is always smaller than his defecting

payoff (i.e., ulji (D) = −cso).
2) Similarly, a cooperative committee member mj cannot

obtain any reward without the contribution of leaders and
sufficient number of committee members. In this case, payoff
of a committee member who has deviated is umj

i = −cM .
3) With similar justification, we can prove that all other

online nodes kj will not be able to increase their payoffs
unilaterally by deviating from D to C, as its payoff would
be decreased to u

kj
i (C) = −cK . Hence, All − D strategy

profile is a NE in GAl.
In fact, in such distributed protocols one would like to

enforce All−C strategy profiles as a Nash equilibrium. But the
following theorem shows that the current Algorand incentive
mechanism cannot enforce cooperation among all nodes.

Theorem 2. In each round i of GAl with N players (nL > 1
leaders, nM committee members, and nK remaining nodes),
if rewards are shared solely based on the current values of the
stakes as shown in Equation (2), i.e., the proposed Algorand
Foundation mechanism, we cannot establish all-cooperation
strategy profile (All-C) as a Nash equilibrium strategy profile.

Proof. Let us assume that all Algorand nodes have already
cooperated and paid the costs cL, cM , or cK as leader,
committee member, or other online nodes. Given Equations
(1) and (2), the pay of of node j in round i is

uji (C) =





rislj − cL Leader lj
rismj

− cM Committee member mj

riskj − cK Online node kj .
(3)

Consequently, by comparing cooperative and defecting payoffs
for each node similar to Theorem 1, and if we assume that

L
Leaders

M
Committee 
members

K
Other Nodes

αBi
  

βBi
  

(1-α-β)Bi
  

  

Bi

Fig. 4: Our proposed model shares the reward according to
the roles of nodes as well as their stakes.

they deviate unilaterally, we can conclude that all nodes have
incentive to deviate and increase their payoffs. Then, All−C
strategy profile can never be an NE in GAl.

The results presented in Theorems 1 and 2 show that
we cannot enforce cooperation in the current reward sharing
approach for Algorand. In fact, if all users are rational they
will try to only play D and the system remains in All−D Nash
equilibrium. Intuitively, this occurs because different nodes
receive the same (portion of the) rewards despite bearing dif-
ferent costs depending on their role in the round. To overcome
this, we propose a novel incentive-compatible reward sharing
mechanism that shares rewards by considering node roles.

B. Proposed Reward Sharing Mechanism

As shown in Fig. 4, we propose that the reward Bi must
be divided into three parts, and then be distributed among
the nodes given their stakes. In our model, we assume that
αBi, βBi, and γBi must be distributed among leaders, com-
mittee members, and other online nodes, where α ∈ (0, 1),
β ∈ (0, 1), and γ ∈ (0, 1) should be chosen by the designer,
such that Algorand Foundation can enforce the cooperation
among users. Note that α + β + γ = 1. Given this approach,
one can provide different incentives to different types of users.
Hence, the payoff would be calculated by

uji (C) =





rLi slj − cL Leader lj
rMi smj

− cM Committee member mj

rKi skj − cK Online node kj ,
(4)

where rLi = αBi

SL
, rMi = βBi

SM
, and rKi = γBi

SK
. Let us now

define and analyze a new game GAl+, in which the payoffs
are calculated by Equation (4).
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C. Analysis of GAl+
In this section, we will first determine conditions under

which user cooperation can be fostered. Then we will in-
vestigate the existence of NE in this game. The following
lemma presents conditions under which network leaders and
committee members have enough incentive to cooperate.

Lemma 2. Considering GAl+ with N players (nL > 1 leaders,
nM committee members, and nK remaining nodes), where
reward Bi shares with ratios α, β, and γ = 1−α−β between
leaders, committee members, and remaining nodes. A selfish
leader lj or committee member mj cannot deviate from C
strategy unilaterally to increase its payoff, if and only if:

Bi > max{ cL − cso
( αSL
− γ

SK+s∗lj
)s∗lj

,
cM − cso

( β
SM
− γ

SK+s∗mj

)s∗mj

},

where s∗lj and s∗mj
are the minimum values of stakes for the

leaders and committee members in round i.

Proof. Let us consider that all leaders and committee members
have cooperated in a given strategy profile. In this case, the
payoff for any cooperative leader lj ∈ L would be equal
to u

lj
i (C) = αBi

SL
slj − cL. This payoff would be changed

to u
lj
i (D) = γBi

SK+slj
slj − cso, if the leader lj plays D and

only keep its status online, without playing its role of a leader
in Algorand. Hence, this leader has no incentive to defect if
u
lj
i (C) > u

lj
i (D). Consequently, we can show that under the

following condition on Bi, the leader lj has no incentive to
deviate from C to D:

Bi >
cL − cso

( αSL
− γ

SK+slj
)slj

. (5)

Similarly, any committee member mj ∈ M cannot increase
his payoff unilaterally by defecting and play D if:

Bi >
cM − cso

( β
SM
− γ

SK+smj
)smj

. (6)

Given two different bounds on the distributed rewards in
Equations (5) and (6), and if we consider that s∗lj and s∗lm
are the minimum values of stakes for leaders and committee
members in round i, we can conclude that no leader or
committee member can deviate in round i if

Bi > max{ cL − cso
( αSL
− γ

SK+s∗lj
)s∗lj

,
cM − cso

( β
SM
− γ

SK+s∗mj

)s∗mj

}.

Lemma 2 shows that the Algorand Foundation must always
distribute enough rewards to the leader and the committee
members in each round to enforce cooperative behavior among
them. The optimal reward Bi is a function of the cost of
cooperation and the current state of stakes in this round. It also
depends on the values of α, β, and γ, which must be selected
by the administrator. We consider that these values would be
announced at the beginning of each round. Another interesting
fact is that if we assign more fraction of the reward Bi to the

leaders and the committee members (i.e., increasing the values
of α and β), we can reduce the value of reward Bi, but have
all leaders and committee members cooperate in a cooperative
strategy profile. This will help the administrator to save more
Algos for future use. Finally, giving more rewards to online
nodes (kj ∈ K) will increase the value of the required reward
for cooperative behavior of leaders and committee members.
Note that in Lemma 2, the following conditions must hold:

α

SL
− γ

SK + slj
> 0 &

β

SM
− γ

SK + smj

> 0 (7)

This can be easily proved given that the cost of cooperation for
the leaders and the committee members (i.e., cL and cM ) are
always positive. Having established the required conditions for
cooperation by leaders and committee members (Lemma 2),
we can now establish conditions under which GAl+ has a Nash
equilibrium apart which is not the All − D strategy profile.
In fact this new class of cooperative NE in GAl+ will depend
on the behavior of other online nodes and their roles in the
Algorand network for any given round. Let us first review two
important Algorand [22] concepts:

Definition 1. In Algorand network, “strong synchrony” is a
network state, where most honest Algorand nodes (e.g., 95%)
can send messages that would be received by most of the other
nodes (e.g., 95%) within a bounded time.

Definition 2. In Algorand network, with “weak synchrony”
state, the network can be asynchronous for a long but bounded
period of time. After this asynchrony period, network must be
again strongly synchronous for a reasonably long time.

Now we can form multiple sets of Algorand nodes which
meet strongly synchronous network assumption together.

Definition 3. “Strong synchrony set” is a list of Algorand
nodes that together forms a strongly synchronous network.

As Algorand protocol achieves liveness in strongly syn-
chronous settings and safety with weak synchrony, the fol-
lowing theorem focuses on finding Nash equilibria for GAl+
with the strong synchrony assumption.

Theorem 3. In game GAl+ with N players (nL > 1 leaders,
nM committee members, and nK remaining nodes), for each
Algorand strong synchrony set Y, a strategy profile s∗ is a
Nash equilibrium in round i, if in this strategy profile:

1) All leaders cooperate,
2) All committee members cooperate,
3) All other nodes which are in Y cooperate, and
4) Other online nodes defect

and the value of Bi is selected such that,

Bi > max{ cL − cso
( αSL
− γ

SK+s∗lj
)s∗lj

,
cM − cso

( β
SM
− γ

SK+s∗mj

)s∗mj

,

(cK − cso)SK
s∗kjγ

}

where s∗lj , s∗mj
, and s∗kj are the minimum stakes for leaders,

committee members, and other online nodes in Y, in round i.
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Proof. In order to prove that the strategy profile s∗ defined
by this theorem is a Nash equilibrium, we need to show that
none of the users can increase their payoffs unilaterally, by
changing the strategy. We divide the players into three groups,
i.e., leaders, committee members, and other nodes. For the
leader and committee members we apply our results presented
in Lemma 2 to define s∗. In other words, the payoff of leaders
and committee members cannot be increased unilaterally if
the conditions of Lemma 2 are hold. Now, we will focus on
remaining nodes, i.e., skj . Given Definition 1, each remaining
node could be a member of strong synchrony set Y. Then
two cases must be considered: (i) Online nodes who are not
in Y cannot increase their payoffs by deviating from D to C
and accept the incurred cost of cK , as the block would be
made whether they cooperate or not. (ii) For each remaining
node skj which is the member of Y, the payoff of cooperation
would be u

kj
i (C) = γBi

SK
skj − cK . But, the payoff of a

defecting node would be u
kj
i (D) = −cso. In other words,

if a member of Y defects, no new final block would be
created in this round given Definition 1. So, to prevent skj
from defecting the defined strategy in s∗, ukji (C) must be
greater than ukji (D), hence, we can find another bound for Bi,
i.e., Bi >

(cK−cso)SK

skj
γ . Given the above analysis, the defined

strategy profiles which satisfies the condition form a Nash
equilibrium strategy profile in game GAl+.

D. Proposed Reward Sharing Mechanism

Our next goal is to extend the current Algorand reward
sharing method by considering the strategic behavior of
users/nodes. In this case, we provide a solution for Algorand
Foundation to foster cooperative behavior among all Algorand
nodes. Moreover, our computed bounds in Theorem 3 shows
that we can minimize the reward Bi by selecting suitable
values for α, β, and γ. Our results presented in Section III-C
showed that the Algorand Foundation needs to deploy an
incentive-compatible mechanism to prevent nodes from selfish
behavior (defecting) to unilaterally increase their payoff. We
have proposed an algorithm based on Theorem 3 which
provides enough incentive for Algorand nodes to cooperate.
Our proposed Algorithm 1 proceeds as follows: at the end of
each Algorand round, the Algorand Foundation extracts the
list of the leaders, the committee members, and other online
nodes as L, M , and K. These values can be simply computed
by processing and verifying the list of all the sortition proofs
that have been sent by the Algorand nodes in their votes (as
committee members) or in the header of their block proposals
(as leaders). Also, the Algorand foundation determines the set
of other online nodes from their gossiped network messages.
. Then, the foundation will calculate the optimal values for
α and β to minimize Bi, by using the defined bounds in
Theorem 3. Next, the Algorand foundation computes the
rewards for all nodes that have participated in this round based
on their roles using the computed α, β, and Bi values. Finally,
the foundation creates the reward transactions for each node
and gossip it to the Algorand network. These transactions will

Algorithm 1 Incentive-Compatible Reward Sharing

1: procedure REWARDSHARING(i)
2: blocki ← Wait until final block created in round i
3: // Compute α, β,Bi from Theorem 3 bounds
4: L,M,K, Stakes← ExtractDataFromBlock(blocki)
5: α, β,Bi ← ComputeParameters(L,M,K, Stakes)
6: for all Node n ∈ blocki do
7: reward← ComputeReward(n,Rolei(n), α, β,Bi)
8: SendReward(reward, n, i)
9: end for

10: RewardSharing(i+ 1)
11: end procedure

be verified by the Algorand network and put in the next blocks.
We must clarify that as the stakes are computed at the end of
each round, the Bi value is exactly equal to the minimum
value of the reward that Algorand foundation should pay to
the cooperative nodes. Thus, there is no incentive for selfish
nodes to deviate from the reward sharing protocol.

V. EVALUATION

In order to evaluate our proposed mechanism, we first
conduct a series of numerical analysis to obtain the best reward
shares in our model (i.e., α and β). According to the results
presented in Theorem 3, we can minimize the reward in each
round such that it guarantees the cooperation of a subset of
Algorand nodes. The optimal reward is ensured by choosing
optimal reward shares for leaders and committee members,
i.e., α and β. In our numerical analysis, we assume that the
minimum acceptable values of stakes for each role are equal
to s∗l = 1, s∗m = 1, and s∗k = 10 Algos. In other words, by
setting s∗k = 10, we ignore any strong synchrony set containing
nodes with stakes less than 10 Algos in this numerical analysis.
We must highlight that in the real Algorand network nodes
with low stakes do not choose to cooperate due to their
negligible chance of getting elected as leaders or committee
members and due to their low share of rewards [37]. Hence,
setting s∗k = 10 can results in a more realistic evaluation. We
also assume that the cost of cooperation for the leaders, the
committee members, and other nodes are cL = 16, cM = 12,
cK = 6, and cso = 5 micro Algos. Our results show that
for (α, β) = (0.02, 0.03), the minimum values of Bi would
be about 5.2 Algos per round. Considering the value of SK
which is always much greater than SL and SM , the calculated
bounds presented in Theorem 3 is usually a function of the
third bound, i.e., (cK−cso)SK

s∗kj
γ . Hence, to minimize the value of

Bi we need to maximize γ and consequently minimize α and
β (recall that γ = 1 − α − β). In summary, our mechanism
always considers enough share of the total reward for leaders
and committee members, as shown in Equation (7). Moreover,
it also provides enough rewards to all other online nodes
considering the value Bi which is greater than (cK−cso)SK

s∗kj
γ .

We then simulate an Algorand network containing 500,000
nodes, in which the amount of stakes for leaders and commit-
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(a) U(1, 200) (b) N (100, 20) (c) N (100, 10) (d) N (2000, 25)

Fig. 5: Distribution of computed Bi values in each simulation by our proposed mechanism, for different distributions of stakes.

Fig. 6: (a) The cumulative rewards distributed among Algorand
nodes by our proposed algorithm and Algorand Foundation.
(b) The cumulative rewards when the Algorand nodes with
less than 3 (U3(1, 200)), 5 (U5(1, 200)), and 7 (U7(1, 200))
stakes have been removed from the network.

tee members are SL = 26 and SM = 13K, respectively. We
have chosen the number of nodes and the stake values from
Gilad et al. simulation parameters in [22]. We run simulations
with three different settings, where we distribute 50 million
Algos among these 500K nodes using (i) uniform distribution
of U(1, 200), (ii) normal distribution of N (100, 20), and
(iii) N (100, 10). In each round, we also randomly choose
1000 nodes, in which nodes with higher stakes would be
selected more often. Then we generate a series of random
transactions for the selected nodes with a uniform distribution
U(−4, 4). Negative values represent sending Algos while
positive values represent receiving Algos in nodes. With these
values we tried to emulate the real Algorand exchange system
available at algoexplorer [37]. As for the reward sharing
mechanism, we deploy both the Algorand Foundation proposal
presented in Table 2 and our proposed mechanism presented
in Algorithm 1. We run the simulation for 200 times with
different distributions, where each instance executes for 10
rounds. Finally, we compute the average of total rewards.

Our simulation results (Fig. 5) show that the calculated
rewards for our proposed mechanism follows the distribution
of stakes in the network. For example, we must distribute
higher rewards (around 50 Algos) for uniform distribution of
U(1, 200), as there exist many nodes with low stakes. But with
a normal distribution N (100, 10), we need to only distribute
smaller rewards, i.e., around 5 Algos. In fact N (100, 10)
simulates the initial phase of Algorand, where around 50
millions Algos were in the network. Comparing the results
presented in Fig. 5-(d) (which simulates current status of
Algorand [37] with more than 1 billion Algos, byN (2000, 25)

stake distribution) with Fig. 5-(c), we can also conclude that
when the total stake of the network increases, we need smaller
reward to enforce cooperation (around 1.2 Algos). The results
show that the Foundation can adapt the rewards given the
status of the network in terms of stakes, by using our model.

Fig. 6-(a) shows the cumulative calculated reward in each
round with our proposed algorithm and Algorand Foundation
mechanism. This result shows that our proposed mechanism
distributes much smaller rewards among nodes, given the
distribution of stakes. For example, in contrast to the reward
sharing approach proposed by the Algorand Foundation which
shares 20 Algos in each round for the first 500,000 rounds [34],
our proposed reward sharing algorithm will share about 5.2
Algos for a normal distribution of stakes. More interestingly,
our proposed solution will not increase the reward until 6
million blocks are generated, as it can guarantee cooperation
without paying more Algos. Our approach only distributes
more rewards when the distribution of stakes is U(1, 200).
This is due to the fact that the number of nodes with small
values of stakes are higher with this distribution. If we can
remove the nodes with smaller stakes (e.g., nodes with up to
7 stakes) we can still keep the synchrony of the network and
distribute much smaller rewards. This is shown in Fig. 6-(b).

VI. CONCLUSION

In this paper, we first introduced a system model to cap-
ture the main operational features of the Algorand. We then
comprehensively studied the problem of node selfishness in
Algorand and proposed a possible solution to overcome it by
employing game-theoretic modeling and analysis. Our analyt-
ical results show that we can always enforce cooperation by
carefully distributing the correct amount of rewards. Moreover,
our numerical analysis validated that the proposed reward
sharing mechanism outperforms the current proposal by the
Algorand Foundation. We believe that this work is the first
step towards a better understanding of the effects of selfish
behavior in Algorand. Our mechanism can help the Algorand
Foundation use the Algos wisely, as well as, adapt dynamically
with the distribution of stakes in the network. In terms of future
work, we can also get in touch with the Algorand Foundation
to introduce our proposed mechanism for reward sharing in the
initial phase (for 1.75 billion Algos), as well as the distribution
of transaction fees as rewards in near the future.
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