
Automated Synthesis of NFV Topology:
A Security Requirement-Oriented Design

A H M Jakaria∗, M. Ashiqur Rahman∗, and Carol Fung†
∗Department of Computer Science, Tennessee Tech University, Cookeville, USA

†Department of Computer Science, Virginia Commonwealth University, Richmond, USA
Email: ∗ajakaria42@students.tntech.edu, ∗marahman@tntech.edu, †cfung@vcu.edu

Abstract—Cyber defense today heavily depends on expensive
and proprietary hardware deployed at fixed locations. Network
functions virtualization (NFV) reduces the limitations of these
vendor specific hardware by allowing a flexible and dynamic
implementation of virtual network functions in virtual machines
running on commercial off-the-shelf servers. These network
functions can work as a filter to distinguish between a legitimate
packet and an attack packet, and can be deployed dynamically to
balance the variable attack load. However, allocating resources to
these virtual machines is an NP-hard problem. In this work, we
propose a solution to this problem and determine the number and
placement of the VMs. We design and implement NFVSynth, an
automated framework that models the resource specifications,
incoming packet processing requirements, and network band-
width constraints. It uses satisfiability modulo theories (SMT)
for modeling this synthesis problem and provides a satisfiable
solution. We also present simulated experiments to demonstrate
the scalability and usability of the solution.

Index Terms—NFV architecture; formal modeling; DDoS se-
curity; synthesis.

I. INTRODUCTION

Information security is one of the topmost priorities for
any organization. Some recent incidents prove that different
types of attacks are becoming stronger and more frequent day
by day. Many of the solutions to these threats are composed
of proprietary hardware. Upgrading or adding new network
functions typically enforces the integration of more of these
hardware appliances which requires time and imposes high
costs. The traditional methods of threat detection are limited
by the restricted computation capacity and inflexibility of
involved network functions in dedicated hardware, such as
firewall, router, intrusion detection systems (IDS), etc.

In NFV technology, network functions are implemented and
deployed as virtual machines (VMs) in the form of software
that runs on the commodity hardware. The VMs run on these
general purpose hardware systems, which not only provides
the benefit of elasticity, but also reduces the cost by running
on low-cost commodity platforms like x86- or ARM-based
servers instead of specialized hardware. NFV allows testing
new apps more easily and offers an improved flexibility in
assigning virtual network functions (VNFs) to hardware.

Utilizing VNFs to defend against cyberattacks has become
a common trend these days. Rebahi et al. designed and
developed a virtual security appliance (vSA) that is capable
of detecting various network attacks while offering an ac-
ceptable level of performance [1]. A cloud-based architec-

ture [2], and VGuard [3], a tool based on NFV, have been
developed essentially to counter DDoS attacks. Liyanage et
al. introduced NFV-based security apps to protect the LTE
architecture [4]. Pastor et al. proposed use cases for an open
operation, administration, and management (OAM) interface
to virtualized security services for home/residential network
access [5]. However, most of them fail to address the issue
of resource management when deploying the associated VMs.
Fayaz et al. [6] focused on an ISP-centric deployment model
in Bohatei, where an ISP offers DDoS-defense-as-a-service
to its customers by deploying multiple datacenters, and each
datacenter has commodity hardware servers to run standard
VNFs.VNGuard, a framework proposed by Deng et al. [7],
performs management of virtual firewalls that protect virtual
networks (VNs).

The physical properties of the servers, such as memory,
CPU, etc., determine the capabilities of the VNFs running
on the VMs within these servers [8]. Using the available
server resources efficiently is a challenge because they are
limited. The optimal placement of VMs in a network has
been discussed in the literature [9], [10], [11]. Although the
authors in these works formalized their approach considering
several network resource constraints, as well as, service level
agreements, they do not apply the idea to a security mechanism
utilizing the VNFs [12], [13], [14]. A network architecture
with the help of formal model was introduced in [6]. But it
did not solve this problem in a timely and responsive manner.
In this work, we present a novel tool, NFVSynth, which
solves this bin packing problem using formal verification. It
is an automated framework for synthesizing virtual network
configurations and placements of VMs, using SMT constraint
satisfaction checking.

II. NFVSYNTH FRAMEWORK

NFVSynth follows a top-down approach for the automation
of NFV network architecture design synthesis. Fig. 1 presents
an overview of the NFVSynth framework. The framework for-
mally models the COTS server resource configurations, as well
as the specifications of VMs. The packet processing require-
ments (i.e., the attack traffic properties), the physical network
topology including bandwidths of the links and latency of the
servers from ingress points are also modeled by the frame-
work. The framework formalizes the NFV architecture design
synthesis problem as a VNF deployment plan that includes

978-3-901882-98-2 c© 2017 IFIP

•Constraints

•Requirements

Model

• SMT

Solver
• VM Types

• VM Placements

NFV Architecture
Synthesis

VM Type
&

Placement
Model

Network
Topology

VM Connectivity &
Bandwidth Specification

Resource
Model

Memory
Specification

CPU
Specification

Traffic
Properties

Fig. 1. The framework architecture of NFVSynth.

the determination of VM placements and properties (e.g.,
type, memory, and CPU), satisfying the packet processing
requirements within the physical resource constraints. Finally,
it encodes the synthesis problem into SMT logics and provides
a feasible solution using an efficient solver.

Use Case-based Design: Fayaz et al. [6] proposed a flexible
and elastic DDoS defense system, Bohatei, that shows the
benefits of software defined networking (SDN) [15] and NFV
in the context of DDoS defense. It makes the use of NFV
capabilities to elastically alter the required scale (e.g., 10
Gbps vs. 100 Gbps attacks) and type (e.g., SYN proxy vs.
DNS reflector defense) of DDoS defense realized by defense
functions running on VMs. A client-server model that uses
packet filtering methods to disallow attack traffic from a client
to reach the server was discussed in [16] by Jakaria et al. The
defense filtering network is an NFV network that consists of
dynamically created VNFs. In the physical layer, there are
one or more product servers that provide online services to
customers from the Internet, and some commodity servers that
are connected to each other. Each server hosts VMs to realize
different types of VNFs, such as dispatchers, switches, and
agents. The dispatcher functions as the gateway for packets to
the system. It runs a load balancing algorithm and distributes
the incoming traffic to the deployed agents. The VNFs are
organized in a way so that attack flows will be handled by
filtering agents and they will filter out the attack traffic by
performing a spoofed handshake with the client. The number
of VNFs and their capability of processing packets depend on
the commodity servers’ available resources. The placement of
the dispatcher and the agents, and their deployment decision
are challenges that need to be solved.

We build our tool based on the preceding technique. In this
case, the network topology of servers, their resources, and
network bandwidth, as well as the attack traffic intensity, are
provided to the model as input from a text file. The output from
the SMT solver provides the count and placement of VMs
implementing dispatchers and agents. NFVSynth can provide
quick solutions to the problem based on the traffic changes.

III. NFVI VIRTUAL NETWORK SYNTHESIS

This section discusses the formal model of the requirements
and the constraints of the NFV architecture.

A. Packet Processing Requirement Model

In our design, we consider two types of VNFs: dispatcher
and agent. All the incoming packets are forwarded to the
dispatchers. Hence, a dispatcher requires high memory and
CPU, which allow it to process high volume of attack traffic,
as well as normal traffic. It should be installed on a server that
can provide required resources to ensure that the dispatcher
can efficiently dispatch the incoming packets to the agents
and is not overwhelmed by the large number of packets. If T
is the set of all the types, in our case, T = {D,A}.

1) Resource Requirement Model: Memory and CPU cycles
of the COTS servers are one of the main resources that we
consider in this research.Let M V

i,j,t be the memory of VM j of
type t running on server i; while C V

i,j,t be the CPU of that VM.
The sum of the memories of all the deployed VMs on a server
should be between a minimum and a maximum threshold
percentage of the actual physical memory of that server which
is available for the VMs. If µ is the maximum allowed
percentage of memory utilization and µ̄ is the minimum of
that, then the following should hold:

∀i∈S (
∑
j,t

M V
i,j,t ≤ µ×M S

i) ∧ (
∑
j,t

M V
i,j,t ≥ µ̄×M S

i) (1)

The sum of the CPUs of all the deployed VMs on a server
should not exceed the actual physical CPU of that server.

∀i∈S
∑
j,t

C V
i,j,t ≤ CS

i (2)

Regardless of the type of a VNF, the VM that contains it,
must be allocated enough memory and CPU so that it has
the best possible packet processing capabilities. The packet
processing rate of a VM depends on the memory and CPU of
the VM. If Pi,j,t refers to the packet processing rate of a VM,
we can express this as a function of memory and CPU, where
αt is a constant that determines the impact of memory and
βt is a constant determining the impact of CPU on the packet
processing rate for a particular type, and TV

i,j determines the
type of VM j on server i, which is of dispatcher and agent
type in our case.

∀t∈T (TV
i,j = t) → Pi,j,t = (αt×M V

i,j,t)× (βt×C V
i,j,t) (3)

If a VNF is deployed on a VM, it needs to have memory
and CPU greater than a minimum value. Mmin

t and Cmin
t refer

to these minimum values for type t, respectively. This ensures
that the packet processing rate depends both on memory and
CPU. If DV

i,j denotes if VM j is deployed on sever i, the
following holds:

∀t∈T (TV
i,j = t) ∧DV

i,j → M V
i,j,t ≥ Mmin

t (4)

∀t∈T (TV
i,j = t) ∧DV

i,j → C V
i,j,t ≥ Cmin

t (5)

2) Network Bandwidth Requirement Model: We take the
overall network topology of the system as an input to our
solver. The bandwidth of each link in the topology is also
provided. It is required that the packet processing rate of the
VMs does not exceed the bandwidth of the physical links,
otherwise it would be impossible for the VMs to communicate
with each other.

We denote the reachability between two VMs running on
two VMs by Ri,j,k,l, where VM j is running on server
i and VM l is running on server k. Each deployed agent
should be reachable from the dispatcher, and vice versa. No
communication is required between the agents only.

DV
i,j ∧DV

k,l ∧ (TV
i,j = D) ∧ (TV

k,l = A)

→ Ri,j,k,l

(6)

BV
i,j,k,l is the required virtual bandwidth between two de-

ployed VMs. Although there is a two-way communication
between the dispatcher and an agent, we do not simply add
up the packet processing rates of the communicating VMs
to get the bandwidth. Instead, we double the processing rate
of the agent. This is because, by design, the dispatcher will
not forward more packets to an agent than it can handle. The
dispatcher may need a higher bandwidth from the ingress point
to itself, but it distributes the traffic to several agents which
lessens the requirement of higher bandwidth on the other
side. Thus, the required bandwidth between these two VMs
should be, at least, twice as much as an agent can process.
Consequently, if two VMs do not need to communicate, the
virtual bandwidth between them should be zero.

Ri,j,k,l → BV
i,j,k,l ≥ min{(2× Pk,l), (Pi,j + Pk,l)} (7)

¬Ri,j,k,l → (BV
i,j,k,l = 0) (8)

The bandwidth of each link on the path from the server
implementing the dispatcher and the server implementing the
agents should be sufficiently high so that the VMs in them
can talk to each other. Z is the set of all links on the
path from a server to another server. BP

i,k,z is the physical
bandwidth of zth link on the path from server i to server
k. The physical bandwidth of each link should be no less
than the virtual bandwidth required by all the communicating
VMs that are using that link. This will ensure the required
throughput for the communication among the VMs. We model
the constraint as the following, considering δ as the percentage
of the physical bandwidth that a user would like to allocate
for virtual communication:

Ri,j,k,l → ∀z∈Z∀i,k
∑
j,l

BV
i,j,k,l ≤ δ × BP

i,k,z (9)

B. Agent and Dispatcher Specific Requirement Model

The following constraint ensures that if a VM is deployed,
it is either a dispatcher or an agent.

DV
i,j → (TV

i,j = D) ∨ (TV
i,j = A) (10)

¬DV
i,j → (TV

i,j 6= D) ∧ (TV
i,j 6= A) (11)

Incoming
Traffic (80
Gbps) Web Server

1

2
15

25

46
47

50

52

51

Incoming
Traffic (60
Gbps)

Dispatcher

Agent

53
16

26

27 45

Fig. 2. The physical network topology of the servers and VMs implemented
in them.

The combined packet processing rate of all the agents
should be no less than the incoming packet rate. Let PA

i,j be
the processing rate of jth agent located on server i. If P is the
total number of ingress points and Rp is the incoming packet
rate at ingress point p, then the following holds:

(TV
i,j = A) →

∑
i,j

PA
i,j ≥

P∑
p=1

Rp (12)

The total packet processing rate of all the dispatchers
assigned for an ingress point should be at least equal to the
incoming packet rate at that ingress point.

(TV
i,j = D) →

∑
i,j

PD,p
i,j ≥ Rp (13)

We consider the latency of each server from the ingress
points, is a function of number of hops and the propagation
delay, as a metric to choose servers for dispatchers. The
server that is closest to an ingress point should be chosen
to deploy the corresponding dispatcher. In case the ingress
points are in closer proximity, we may consider deploying
one dispatcher for multiple ingress points. In that case, we
maintain a threshold latency (Lth) that is greater than the
latency between an ingress point and a server.

∀p∈P ∃i∈S (TV
i,j = D) → (Lp,i ≤ Lth) (14)

The synthesis problem is formalized as the satisfaction
of the conjunction of all the constraints in Equations 1
through 14. We implement our model by encoding the system
configuration and the constraints into SMT logics. In this
encoding purpose, we use the Z3, an efficient SMT solver [17].
The solver checks the verification constraints and provides a
satisfiable (SAT) result if all the constraints are satisfied.

IV. A SYNTHETIC CASE STUDY

A synthetic network of commodity servers is shown in
Fig. 2. In this example, there are 50 COTS servers in the
NFV network that are connected to each other. From an input
text file, we read the physical connectivity of these servers
through routers in terms of the bandwidth of links and latency
from the ingress points. Memory is provided in GB and CPU
is in number of cores. We consider two ingress points, each
receiving 80 Gbps and 60 Gbps of traffic respectively.

 0

 2

 4

 6

 8

 10

 12

 60 80 100 120 140

N
u

m
b

er
 o

f
D

ep
lo

y
ed

 V
M

s

Traffic (Attack) Rate (Gbps)

Traffic vs number of deployed VMs

#Dispatcher
#Agent

(a)

 2

 4

 6

 8

 10

 12

 6 8 10 12 14 16 18 20

 2

 4

 6

 8

 10

 12

N
u

m
b

er
 o

f
D

ep
lo

y
ed

 A
g
en

ts

N
u

m
b

er
 o

f
u

ti
li

ze
d

 s
er

v
er

s

Number of COTS Servers

Number of available servers vs agents

#Agents for 80 Gbps
#Agents for 140 Gbps

#Utilized servers for 80 Gbps
#Utilized servers for 140 Gbps

(b)

 200

 400

 600

 800

 1000

 1200

 1400

 60 80 100 120 140

T
im

e
(s

)

Incoming Traffic Rate (Gbps)

Traffic vs time

Number of Servers = 75
Number of Servers = 50
Number of Servers = 25

(c)
Fig. 3. (a) Number of required VMs w.r.t. incoming traffic rate, (b) number of deployed agents and utilized servers w.r.t. total available COTS servers, and
(c) model synthesis time w.r.t. incoming traffic rate

NFVSynth gives a SAT result for this example. From the
resultant SAT instance, we find the deployed VM types (TV

i,j)
along with their placements (DV

i,j) in the servers. The result
shows that three dispatchers need to be deployed on server
1 and 46, while several agents need to be installed on server
2, 15, 45 and so on. The dispatchers are deployed on servers
that are closer to the ingress point in terms of latency. There
are only three dispatchers required, because they only need
to dispatch the whole incoming traffic, be it legitimate or an
attack, to all the deployed agents. The packet processing rate
of the dispatcher is, at least, equal to the incoming packet
rate at its corresponding ingress point, while the combined
packet processing rate of the agents is more than the total
incoming rate. In our case, communication is required between
a dispatcher and an agent; virtual bandwidth between any
two dispatcher and agent is in accordance with the bandwidth
of the physical links. NFVSynth also provides the required
memory, CPU and the packet processing rate of each VM.

V. EVALUATION

In our evaluation, we first present the analysis on the
relationships among different deployment parameters such as
traffic and resources. Then, we present the performance (i.e.,
scalability) analysis of the tool. To evaluate NFVSynth, we
ran experiments on different network topologies of different
configurations and connectivity of 5−100 COTS servers. The
servers are equipped with memory between 16−48 GB and
CPU cores of 2−7. NFVSynth was run on a machine running
Windows 10 OS. The machine is equipped with an Intel Core
i7 Processor and a 16 GB memory.

A. Relationships between Deployment Parameters

In this analysis, we ran a number of experiments on similar
network topologies.We increased the traffic rate, which in-
cludes the attack packets, gradually from 50 to 150 Gbps, and
observed the number of deployed dispatchers and agents. This
is demonstrated in Fig. 3(a). In this case, with the increment
of traffic, the number of dispatchers increases very slowly, in
comparison to the number of agents. It is possible for the same
number of agents to process a certain range of traffic rate. In
the figure, the number of agents remains the same between
traffic rates of 80 and 100 Gbps. As the traffic rate passes

beyond 100 Gbps, the number of agents increase to 8 from 7;
it remains the same up to 120 Gbps.

Fig. 3(b) shows the number of deployed VMs, as well as the
number of utilized servers, with respect to the number of total
available servers in the network topology for a certain amount
of incoming traffic (80 and 140 Gbps). As the number of
available servers increases, the number of agents also increases
slowly. The resource and bandwidth constraints are responsible
for this, as NFVSynth tries to find a solution utilizing all
the prospective VMs. The number of candidate servers for
deploying VMs increases in the system as there are more
servers. The graph demonstrates that the number of required
agents and utilized servers for 140 Gbps of traffic is higher
than that of 80 Gbps of traffic. We can also observe from the
graph that the increasing rate of number of utilized servers is
higher than the rate of increasing agents.

B. Scalability

We evaluate the scalability of NFVSynth by analyzing the
time required to synthesize the virtual topology by varying
the problem size. The synthesis time includes the model
generation time and the constraint verification time. The model
synthesis time with respect to the incoming traffic rate is
shown in Fig. 3(c). Three scenarios with 25, 50 and 75 servers
are presented in the graph. We observe that the required time
increases almost linearly with incoming traffic rate. As the
attack traffic increases, added VMs need more resources to
process the traffic. As a result, the constraints become more
strict to solve. As a result, the solver takes more time to find
a satisfiable solution.

VI. CONCLUSION

NFVSynth is tool for the recent networking trend, NFV,
which is used widely in different cyber defense techniques.
We deal with challenges in allocating resources to VMs
that implement virtual network functions. The tool formally
models the defense requirements and resource constraints, and
formalizes the NFV architecture synthesis problem. Then, it
solves the problem using an efficient SMT solver that results
in the placements and classifications of the VMs within a
sustainable period of time.

REFERENCES

[1] Y. Rebahi et al. Virtual security appliances: the next generation
security. In 2015 Int. Conf. on Communications, Management and
Telecommunications (ComManTel), pages 103–110. IEEE, 2015.

[2] S. Yu et al. Can we beat DDoS attacks in clouds? IEEE Transactions
on Parallel and Distributed Systems, 25(9):2245–2254, 2014.

[3] C. J. Fung and B. McCormick. VGuard: A Distributed Denial of Service
attack mitigation method using Network Function Virtualization. In
CNSM, 11th International Conference on, pages 64–70. IEEE, 2015.

[4] M. Liyanage et al. Leveraging LTE security with SDN and NFV. In 2015
IEEE 10th Int. Conf. on Industrial and Information Systems (ICIIS),
pages 220–225. IEEE, 2015.

[5] A. Pastor and D. Lopez. Access Use Cases for an Open OAM Interface
to Virtualized Security Services. 2014.

[6] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey. Bohatei: Flexible
and elastic ddos defense. In 24th USENIX Security Symposium, pages
817–832. USENIX, 2015.

[7] J. Deng et al. VNGuard: An NFV/SDN combination framework for
provisioning and managing virtual firewalls. In NFV and SDN, IEEE
Conference on, pages 107–114. IEEE, 2015.

[8] N. Egi et al. Understanding the packet processing capability of multi-
core servers. Technical report, Intel Technical Report, 2009.

[9] B. Addis et al. Virtual network functions placement and routing opti-

mization. In Cloud Networking (CloudNet), 2015 IEEE 4th International
Conference on, pages 171–177. IEEE, 2015.

[10] S. Mehraghdam et al. Specifying and placing chains of virtual network
functions. In Cloud Networking (CloudNet), 2014 IEEE 3rd Interna-
tional Conference on, pages 7–13. IEEE, 2014.

[11] M. Bari et al. On orchestrating virtual network functions. In Network
and Service Management (CNSM), 2015 11th International Conference
on, pages 50–56. IEEE, 2015.

[12] M. Chowdhury et al. Implementation and performance analysis of vari-
ous vm placement strategies in cloudsim. Journal of Cloud Computing,
4(1):20, 2015.

[13] M. Masdari et al. An overview of virtual machine placement schemes
in cloud computing. Journal of Network and Computer Applications,
66:106–127, 2016.

[14] R. Cohen et al. Near optimal placement of virtual network functions.
In Computer Communications (INFOCOM), 2015 IEEE Conference on,
pages 1346–1354. IEEE, 2015.

[15] B. Nunes et al. A survey of software-defined networking: Past, present,
and future of programmable networks. Communications Surveys &
Tutorials, IEEE, 16(3):1617–1634, 2014.

[16] A. Jakaria et al. VFence: A Defense against Distributed Denial of
Service attacks using Network Function Virtualization. In STPSA, 11th
IEEE International Workshop. IEEE, 2016.

[17] L. D. Moura and N. Bjørner. Z3: An efficient SMT solver. In Conf. on
Tools and Algo. for the Construction and Analysis of Systems, 2008.

